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The effect of a vertical lapse rate of temperature on the 
spiral flow of a fluid in a heated rotating cylinder 

By G.  N. LANCE 
Computation Laboratory, University of Southampton 

(Received 8 October 1957) 

SUMMARY 
Experiments have been performed with a viscous fluid contained 

in a rotating cylinder heated from below. Previous theoretical 
explanations of the flow patterns obtained in these experiments 
assumed that the convective terms in the heat transfer equation 
were negligible. The present paper gives a treatment which 
includes one of these convective terms. The results confirm the 
physical reasoning that, when the lapse rate is positive, the stability 
is increased and that the motion is therefore decreased. 

1. INTRODUCTION 
Many experiments have been performed with a fluid in a rotating 

dish-pan which is heated from below. The case of a shallow fluid has been 
covered very fully by Fultz (1951, 1956). Several authors have put forward 
theories which attempt to explain the results. Davies (1953) used a theory 
which neglected convective terms in the heat transfer equation, whereas 
Kuo (1954, 1955, 1956) included both horizontal and vertical temperature 
gradients, but both these theories needed, for their success, the assumption 
of a shallow fluid. 

Experiments with deep fluids have been described by Fultz (1956). 
Skeib (1953) performed experiments with a value of a, which is effectively 
a depth parameter (see 5 3), very nearly equal to unity. Unity is the value 
of a which is used, in this paper, to obtain the curves shown in figures 1-3. 
Davies’s theory was extended to cover larger depths by Lance & Deland 
(1955) but they neglected the convective terms in the heat transfer equation 
(in the present paper this reference will be referred to as I). 

In the dish-pan experiments the fluid was heated near the circumference 
of the base of the dish-pan and cooled near the axis of rotation. All the 
theories so far put forward have used the method of small perturbations, 
the perturbations being superimposed on a steady state of rotation without 
heating and at constant basic pressure, density and temperature. Previous 
theories, with the exception of Kuo’s (1954), have assumed that the vertical 
temperature lapse rate was zero but the experimental results have shown 
that in fact the temperature varies in a manner which is very nearly a linear 
function of height. The purpose of the present paper is to determine the 
effect of this vertical lapse rate and to see whether the flow patterns previously 
given in I are greatly altered by the lapse rate. 
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2. THE EQUATIONS OF MOTION 

The notation used here is the same as that employed in I, where the 
equations of motion were presented in full. If it is assumed that the motion 
is axially symmetric and that a steady state has been reached, then the 
equations can be written, using cylindrical polar coordinates (r ,  8, z), in 
the following form: 

P1 = Po - 4 T 1 -  To), ( 5 )  

p1  Jc, = J k V T ,  + Q1 +pl  z,bl. (6 )  

In  the above six equations, ul, vl, w1 are the components of fluid velocity 
i n  the directions of r, 6 and z increasing, respectively, relative to an axis 
system fixed in space with the origin at the centre of the base of the dish-pan. 
The  pressure is denoted by p l  and the density by p l ;  p is the coefficient of 
viscosity, u is the reciprocal of the coefficient of cubical expansion, J is the 
mechanical equivalent of heat, c, is the specific heat at constant volume, 
k is the thermometric conductivity and Ql is the viscous dissipation function. 

a2 I a a 2  
v2- - + - - + - Also, D a a - Dt = 241% + w - 

and aul u1 aw 
$ =  +-+>.  l-x r a Z  

1 az 2 ar2 Y ar az2’  

When the liquid is not heated, rotation of the cylinder causes solid 
rotation of the fluid and, if heat is supplied, the departures from the state 
of solid rotation will be small. Thus, if Q is the angular velocity of the 
cylinder, we write 

] (7) 
Ul = u, w1= Qr+v, w, = w, p 1 =  p o + p ,  

pi = po+p ,  Ti = To+ 7’. 
The symbols without sufhxes are the six perturbation quantities which 
determine the departure from the state of solid rotation. It was shown in I 
that, if attention is confined to slow rates of rotation (as in the experiments), 
the upper surface of the liquid is approximately the horizontal plane x = h, 
where h is the depth of the fluid. 

When the expressions (7) are substituted into (1) to (6), the following 
equations are obtained for the perturbation variables : 

(8) 
(9) 

- 2szp,, = - appr + p(vau - up), 
+ 2Qpo u = p(V% - W p ) ,  
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- ap/az -gf + , . m W  = 0, 

y+l = a(ru)/ar + a(rw)/ax = 0, 
(10)' 

(11) 

p =  -uT,  (12) 

V2T = (pc,/k)DT/Dt, (13) 
where all non-linear terms have been neglected. Now, for the purposes 
of the present paper, it is assumed that aT,/ax 3 0 = const., so that (13)  
reduces to 

V2T = (pc,/k)Ow, (14) 
the work of I simply took 0 = 0. 

The term containing aT,/ar has been omitted and there is, in fact, no 
real justification for such an omission; however, it does enable the 
variables r and x to be separated and in this way the equations can be reduced 
to ordinary differential equations (see (17) to (20) below). Moreover, 
such a procedure has the advantage that the effect of only one advection 
term may be obtained and their relative importance may be determined. 
Finally, if the density is eliminated from (10) and (12) it is found that 

- aplaz +gUT + pv2w = 0. (15) 

3. REDUCTION OF THE EQUATIONS TO A SYSTEM OF ORDINARY DIFFERENTIAL 

It was shown in I that the variables r and z can be separated by the 
EQUATIONS 

substitutions 

1 i (16)j 

T ( y ,  4 = T1(z)Jo(By), 
4 r ,  4 = U,(z)J1(Br), 

f 4 y ,  4 = Vl(+Jl(B.), 

4 . 7  4 = W1(z)J,(Pr), 

p(r ,  4 = P1(z)Jo(Br), 1 I 
P ( Y , Z )  = n(z)J,(By), j 

where fly,, is a zero of J1(Bro) = 0 and Y, is the radius of the dish-pan. 
It is only possible to retain the vertical lapse rate in (14) because the 

Y variation of both T and w is of the form Jo(Pr). If the form were not the 
same for both these variables the Y coordinate would not cancel from this 
equation and the system of partial differential equations could not be 
reduced to a system of ordinary differential equations. As in I, all the 
quantities may be written in non-dimensional form and the pressure can 
be eliminated from (8) and (10). 

U"'- a a U  + 2RV + aW" - a3W+ aT = 0, 

The final system of equations is 

(171, 

V = 2RU+a2V,  (18) 

W =  -aU,  (19) 

(20) T" - a2T = (h2aO/v)W = AW, 
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where u is the Prandtl number, v is the kinematic viscosity, a = ,8h and 
R is the rotational Reynolds number Qh2/v ; the dashes denote daerentiation 
with respect to 5 (= x/h). 

The boundary conditions are the same as those used in I, since they 
.do not depend on 0, namely 

U(0) = Y(0) = W(0) = 0, 

u'(1) = V(1) = W(1) = T'(1) = 0. 

T'(0) = 1, 1 
(21) 

4. METHOD OF SOLUTION 

Despite the fact that the system of differential equations (17) to (20) 
is a linear one, it is not practical to solve them without recourse to numerical 
methods. A numerical method was also employed in I but, since then, 
a better method for the solution of a system of linear differential equations 
subject to two-point boundary conditions has been described by Goodman 
& Lance (1956). The improved method was used for the present com- 
putations and found to be very satisfactory. The calculations were 
performed on a Ferranti Pegasus digital computer. 

The value 
of a was taken to be unity. This implies a depth of liquid of about 4 cm 
in a dish-pan with a radius of 15 cm. Since pro = 3.83 and a = ph, 
h = r,/3.83 and so, under the conditions of the experiment, for which 
ro = 15 cm, u = 7 for water at a temperature of 15" C, Y = 0.01 and 
0 = 1, it follows that A = 10737. In the calculations the Reynolds 
number R was taken to be 0 (no rotation), 2, 4, 8 ,  16, 32 and 64. 

Numerical values are required for a, R and A = (h2u0/v) .  

5. RESULTS AND CONCLUSIONS 

Radial velocity component 
Figure 1 shows the curves U ( t )  x lo4 against t ,  for a = 1 and A = 10 737. 

The curves shown are for R = 0, 16, 32 and 64. The results for R = 2, 4 
.and 8 were computed, but they are omitted because they lie between those 
of R = 0 and R = 16. This figure is to be compared with figure 2 a  of I, 
which shows the curves when the lapse rate is zero, i.e. A = 0. 

The following differences may be noted. 
(i) In figure 1, U x lo4 is plotted, whereas in the corresponding figure 

of I, U x  lo3 is shown. Hence, there is a considerable drop in the 
magnitude of the radial velocity component. 

(ii) In the present case, for each value of R there is a zero of U when 
4 < 0-5 ; previously, the zero occurred when 5 > 0.5. 

(iii) For small R the greatest inflow ( U  < 0) is slightly below the surface 
when A # 0, whereas when A = 0, the maximum inflow is at the 
surface. For large R there is a band, for which 0.25 < 5 < 0-75, 
of comparatively slow inflow, but when 6 > 0.75 the inflow increases 
and reaches a maximum at the surface. 
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(iv) In the case of R = 64 the radial motion tends to be concentrated 
Such a behaviour in the upper and lower regions of the fluid. 

was not apparent in the results of I. 
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Figure 1. Non-dimensional radial velocity profile plotted against non-dimensional 
The broken height. 

curve is A - 0, R = 16 and is the value of ~ J x  103. 
Cases for which A = 10 737 are shown as solid lines. 

Zonal velocity component 
Figure 2 shows the curves V(()  x lo4 against g, for a = 1 and A = 10 737. 

The curves shown, for R = 0, 2, 4, 8, 16, 32 and 64, may be compared 
with those of figure 3 a  in I. The following points are notable. 

(i) As in the case of U ( f )  there is a reduction in magnitude by a factor 
of 10. 

(ii) The band of easterlies is confined to f < 0.2 when A = 10 737. 
(iii) The maximum zonal velocity at the surface continues to increase 

as R increases, whereas when A = 0 the zonal velocity reached 
a maximum value when R = 16. (This is only true for R < 64, 
which was the limit to which the calculations were taken.) 
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Figure 2. Non-dimensional zonal velocity profile plotted against non-dimensional 
The broken height. 

curve is A = 0, R = 16 and is the value of VX lo3. 
Cases for which A = 10 737 are shown as solid lines. 

Vertical velocity component 
Figure 3 shows the curves - W(f)  x lo5 against f for a = 1 and 

A = 10 737. The curves for R = 0, 16,32 and 64 are shown, the remainder 
are omitted for simplicity. The case A = 0 is figure 4 a  of I, and the 
following are the differences between the two cases. 

(i) The scale factor is lo5 in the present case as opposed to lo3 in 
the case of A = 0. 

(ii) The curve R = 64 shows a distinct flattening in the range 
0.25 < f < 0.75, when A = 10737, which implies that w is 
tending to a constant value at intermediate depths. 

(iii) For each value of R the maximum vertical velocity is below .$ = 0-5 
when A = 10737, but when A = 0 the maximum is in each case 
above E = 0.5. 

The results, when looked at in toto, show that when a positive vertical 
lapse rate is present, the whole velocity field is reduced in magnitude. 
This result agrees with physical reasoning because, if the upper layers of 
the fluid are the warmest, then greater stability would be expected and 
consequently less motion. 
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Since the results obtained here are an order of magnitude smaller than 
those obtained previously it should be noted that on all the diagrams the 
comparison curves, which are taken from Lance & Deland, are shown 
dotted and are plotted to a different scale. Enough has been said in the 
above remarks, about the results, to make the differences apparent and the 
interested reader is referred to Lance & Deland for complete diagrams of 
the case A = 0. 
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Figure 3. Non-dimensional vertical velocity profile plotted against non-dimensional 
The broken height. 

curve is A = 0, R = 16 and is the value of --Wx104. 
Cases for which A = 10 737 are shown as solid lines. 

A detailed comparison with the experimental results of Fultz and Skeib 
has not been made because, in all the experiments, the value of the Reynolds 
number does not correspond with any of those used in the present 
calculations. It is obviously very desirable to extend this work to higher 
values of R and to other values of the depth parameter a. Such an 
investigation is at present in hand but it was considered worth while to 
publish these results as being a valuable extension of the work described 
in I. 

The author wishes to express his thanks to Mr T. V. Davies for his 
valuable advice. 
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